Click here to go back to the previous page
The fibonacci sequence! By employing matrix diagonalization in finding the nth fibonacci number, we can derive Binet's formula.
The fibonacci sequences starts as follows:
0, 1, 1, 2, 3, 5, 8, 13, ...
Let's start. We begin with a difference equation.
Fn=Fn−1+Fn−2Turn this single equation into a system of two equations and two unknowns.
Fn=Fn−1+Fn−2Fn−1=Fn−1We can use matrices to represent this system as
[FnFn−1]=[Fn−1=Fn−1Fn−1]=[1110][Fn−1Fn−2]The equation of interest is
[FnFn−1]=[1110][Fn−1Fn−2]First, we must generalize the equation. Let un−1=[unun−1] and A=[1110].
The equation above becomes
un−1=Aun−2⇒un=Aun−1Now we have to figure out the starting point. We will define the two fibonacci numbers, F0 and F1, as 0 and 1 respectively.
Based on this
u0=[F1F0]=[10] u1=Au0u2=Au1=A2u0⋯un=Anu0We now have a general formula for the entire system. To determine its behavior as n gets larger and larger, we must find the eigenvalues of A and use diagonalization.
A=[1110] det \lambda^{2} - \lambda - 1 = 0We can obtain the roots to this characteristic polynomial by either completing the square or using the quadratic formula.
\lambda^{2} - \lambda - 1 + \frac{1}{4} = \frac{1}{4} (\lambda - \frac{1}{2})^{2} - 1 = \frac{1}{4} (\lambda - \frac{1}{2})^{2} = \frac{5}{4} \lambda = \pm\sqrt{\frac{5}{4}} + \frac{1}{2} = \frac{1 \pm \sqrt{5}}{2}Therefore
\lambda_{1} = \frac{1 + \sqrt{5}}{2} \qquad \lambda_{2} = \frac{1 - \sqrt{5}}{2}Wow! These two numbers are the golden ratio. When we calculate the eigenvectors, we will find that
x_{1} = \begin{bmatrix} 1 + \sqrt{5} \\ 2 \end{bmatrix} \qquad x_{2} = \begin{bmatrix} 1 - \sqrt{5} \\ 2 \end{bmatrix}Now that we have all of this inforamtion, we know that the matrix of eigenvectors, \textbf{S}, will be
\textbf{S} = \begin{bmatrix} 1 + \sqrt{5} & 1 - \sqrt{5} \\ 2 & 2 \end{bmatrix}and the diagonal matrix of eigenvalues, \Lambda, will be
\Lambda = \begin{bmatrix} \frac{1 + \sqrt{5}}{2} & 0 \\ 0 & \frac{1 - \sqrt{5}}{2} \end{bmatrix}Before we diagonalize \textbf{A}, we need to find the inverse of \textbf{S}. That should be pretty simple to do.
\textbf{S}^{-1} = \frac{1}{\det\textbf{S}}\begin{bmatrix} s_{22} & -s_{12} \\ -s_{21} & s_{11} \end{bmatrix} = \frac{1}{4\sqrt{5}} \begin{bmatrix} 2 & \sqrt{5} - 1 \\ -2 & 1 + \sqrt{5} \end{bmatrix}Now if we diagonalize \textbf{A}, it can be written as
\textbf{A} = \textbf{S}\Lambda\textbf{S}^{-1}and the system now looks like this:
u_{n} = \textbf{A}^{n}u_{0} = \textbf{S}\Lambda^{n}\textbf{S}^{-1}u_{0} u_{n} = \begin{bmatrix} F_{n+1} \\ F_{n} \end{bmatrix} = \begin{bmatrix} 1 + \sqrt{5} & 1 - \sqrt{5} \\ 2 & 2 \end{bmatrix} \begin{bmatrix} \frac{1 + \sqrt{5}}{2} & 0 \\ 0 & \frac{1 - \sqrt{5}}{2} \end{bmatrix}^{n} \frac{1}{4\sqrt{5}} \begin{bmatrix} 2 & \sqrt{5} - 1 \\ -2 & 1 + \sqrt{5} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}With this, we can work to simplify.
u_{n} = \begin{bmatrix} F_{n+1} \\ F_{n} \end{bmatrix} = \begin{bmatrix} 1 + \sqrt{5} & 1 - \sqrt{5} \\ 2 & 2 \end{bmatrix} \begin{bmatrix} \left(\frac{1 + \sqrt{5}}{2}\right)^{n} & 0 \\ 0 & \left(\frac{1 - \sqrt{5}}{2}\right)^{n} \end{bmatrix} \frac{1}{4\sqrt{5}} \begin{bmatrix} 2 \\ -2 \end{bmatrix} u_{n} = \begin{bmatrix} F_{n+1} \\ F_{n} \end{bmatrix} = \begin{bmatrix} (1 + \sqrt{5})\left(\frac{1 + \sqrt{5}}{2}\right)^{n} & (1 - \sqrt{5})\left(\frac{1 - \sqrt{5}}{2}\right)^{n} \\ 2\left(\frac{1 + \sqrt{5}}{2}\right)^{n} & 2\left(\frac{1 - \sqrt{5}}{2}\right)^{n} \end{bmatrix} \frac{1}{2\sqrt{5}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} u_{n} = \begin{bmatrix} F_{n+1} \\ F_{n} \end{bmatrix} = \frac{1}{2\sqrt{5}}\begin{bmatrix} (1 + \sqrt{5})\left(\frac{1 + \sqrt{5}}{2}\right)^{n} \\ 2\left(\frac{1 + \sqrt{5}}{2}\right)^{n} \end{bmatrix} - \frac{1}{2\sqrt{5}}\begin{bmatrix} (1 - \sqrt{5})\left(\frac{1 - \sqrt{5}}{2}\right)^{n} \\ 2\left(\frac{1 - \sqrt{5}}{2}\right)^{n} \end{bmatrix}We are only interesting in the second row of the solution because it gives us the formula for the nth fibobacci number. It tells us
F_{n} = \left(\frac{1}{2\sqrt{5}}\right) 2\left(\frac{1 + \sqrt{5}}{2}\right)^{n} - \left(\frac{1}{2\sqrt{5}}\right) 2\left(\frac{1 - \sqrt{5}}{2}\right)^{n} F_{n} = \left(\frac{1}{\sqrt{5}}\right) \left(\frac{1 + \sqrt{5}}{2}\right)^{n} - \left(\frac{1}{\sqrt{5}}\right) \left(\frac{1 - \sqrt{5}}{2}\right)^{n} F_{n} = \frac{\left(\frac{1 + \sqrt{5}}{2}\right)^{n} - \left(\frac{1 - \sqrt{5}}{2}\right)^{n}}{\sqrt{5}}And finally, we have arrived at Binet's formula.